Raising Concrete with Confidence
When pumping a lightweight material beneath a slab, you need the confidence that it is strong enough for the application. How strong is strong enough? This is a commonly asked question by contractors that are new to slab jacking with polyurethane. Alchemy-Spetec structural foams only need to be as strong as dirt, but they're actually stronger than crystalline bedrock.
The Right Strengths for Concrete Lifting
Slab lifting foams are rated on density (weight per cubic feet) and compressive strength. This testing and rating are based on the foam in a free-rise state; the parts A and B are mixed together and allowed to expand freely. Our AP Lift 430 and AP Lift 475 structural lifting foams, for example, weigh 2.75 – 3.25 lbs (AP Lift 430) to 4.75 – 5 lbs (AP Lift 475) per cubic foot. But they have compressive strengths of 50 psi and 100 psi in a free-rise state. That's the equivalent of 7,200 to 14,000 lbs per square ft of support, just in a free-rise state.
Polyurethane Slab Jacking Compared to Clay and Bedrock
To put that into perspective, the National Home Builders Association and the International Building Code list stiff clay at 4,000 psf and crystalline bedrock as having 12,000 psf of load-bearing capacity. Consider the job site conditions where the foam will be injected into a confined area. Testing data in the lab shows that our lifting foams will increase in compressive strength: In a space confined 25% by volume there will be an increase of 31% in psi and in a space confined by 75% there will be a 79% increase in the psi.
Concrete Leveling for Any Job with the Right Foam
Today polyurethane concrete lifting foams are used to level airport slabs supporting jumbo jets, equipment and building slabs supporting tremendous loads, and even railway sleepers that support the heaviest freight trains. So don't let the word “foam” fool you. These resins cure to strengths beyond what is needed to support any structure.




If you're a leak seal contractor, you may be familiar with this situation: A property owner with leaking concrete calls you up and says, "Hey, everything is dry right now, so I want to get someone out here to go ahead and waterproof the structure." Attempting a waterproofing job when the structure is completely dry is not recommended.












Polyurethane grouting is a complex process that involves numerous specifications and guidelines. However, amidst the vast amount of information, there are five fundamental rules that lie at the core of all successful polyurethane grouting projects. We will explore these rules, highlighting their significance in achieving desired outcomes.
It’s crucial to determine if your project requires products that meet NSF/ANSI 61-5 standards for contact with drinking water. But what exactly are NSF/ANSI/CAN 61 standards? Our goal here is to provide a concise and comprehensive overview of why NSF approval is important for polyurethane geotech and leak seal materials.
In this article, we’re comparing the use of epoxies and polyurethanes for waterproofing. This is not a battle of good versus evil, but rather a discussion about their differences and when to use each type of material.
“At what pressure am I going to inject the grout?” This question is not only common but also crucial on leak seal jobs, as it directly impacts the quality of your work. The answer, however, is not as straightforward as one might hope. The optimal pressure for injection is as low as possible. However, the exact pressure cannot be determined until the injection process begins.

A question that often comes up in our line of work is whether a cartridge can be used to inject cracks, specifically leaking cracks in concrete. The answer is a resounding yes...depending on the situation. In some cases, an 
An Oakwood, Georgia corrugated metal pipe rehab job, involving the replacement of the end caps, resulted in soil migration through the new joints. This in turn led to depressions in the asphalt road above. The 
Alchatek's 