Engineers determined that soil was passing through the precast concrete retaining wall that separated the lower parking level from the surrounding earth. Testing revealed substantial voids had formed behind the wall, primarily involving clay soils that had become soft and unstable. While the wall itself remained structurally sound, the continued migration of soil threatened to create more significant issues if left untreated. Traditional repair methods would have required extensive excavation and potential wall replacement, a prohibitively disruptive and expensive approach for an active parking facility. The challenge was stabilizing the soil and filling the voids without impeding parking operations.
Alchatek recommended using two-component polyurethane foam (AP Lift 475) to stabilize the soil and fill the voids behind the wall. This material was selected specifically because of its high compressive strength and ability to effectively fill large voids in clay soil conditions. Since the wall was precast concrete and structurally sound, there was no concern about the polyurethane's strength pushing or damaging the wall. The expansive properties of the material would ensure complete penetration into irregular void spaces, while its closed-cell structure would prevent future water migration that could cause additional soil loss. This approach would stabilize the subsurface conditions without requiring excavation or disrupting the facility's operations.
The project successfully halted soil migration through the retaining wall and stabilized the pavement above. The two-component polyurethane effectively filled all voids while creating a waterproof barrier to prevent future erosion. Most importantly, the solution eliminated the need for disruptive and costly excavation, allowing the parking structure to remain operational throughout the repair process. Post-treatment monitoring showed complete stabilization with no further signs of settlement or cracking in the pavement. The property owner avoided significant reconstruction costs that would have been incurred with traditional methods, while also preventing potential revenue loss from parking facility closure. This case demonstrates how polymer injection technology can provide effective structural solutions with minimal operational impact, a key consideration for commercial property remediation.